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The problem of constructing an airfoil in a flow of an ideal incompress~le fluid for a specified velocity distribution on the contour 
when there is a suction slot in the airfoil is solved. The boundary of the slot is modelled by a segment of an equipotential with 
the specified velocity distribution in it. A condition for the velocity at the ends of the slot to be finite is introduced which enables 
one to construct airfoils which have a smooth flow around them. The complex potential of the flow around a circle with a slot 
is found in analytic form. Conditions are obtained for the closure of the required contour and the method of quasisolutions is 
used to satisfy these conditions. An example of the construction of the airfoil contour with a lift coefficient greater than two is 
presented. @ 1997 Elsevier Science Ltd. All rights reserved. 

The improvement of the aerodynamic properties of wings by means of suction and blowing devices long 
ago aroused the interest of investigators, and various mathematical models of such devices are known. 
If a slot, through which suction or blowing of the flow occurs, is sufficiently narrow, it is modelled by 
a point singularity (a sink or source). The problem of the flow around a Zhukovskii airfoil when there 
is a source or a sirfi: in the airfoil has been considered in [1]. A complete solution of the inverse problem 
for an airfoil with ~ources and sinks, that is, the problem of constructing its contour using the velocity 
distribution which is specified on it, has been given [2, pp. 128-133]. However, when a slot is modelled 
by a point singulaiity in an airfoil, an infinitely high velocity and infinite rarefaction occur, which are 
physically impossible. 

The problem of the flow of ideal incompressible fluid around a circular cylinder with a slot, with an 
inlet cross-section which is modelled by an equipotential in the form of an arc of a circle, has been 
investigated in detail in [3] for the case of suction through a wide slot. 

However, in the case of a smooth airfoil, with the exception of its trailing edge, when the inlet cross- 
section of the slot MN is modelled by an equipotential (we will subsequently call it the slot boundary), 
the velocity at its ends (at the points M and, in the general case, the point N) also becomes infinite. 
The velocity at the point N is equal to zero if the flow branches in it (Fig. la). In order to obtain finite 
velocities at the points M and N within the framework of the model of an ideal incompressible fluid, 
it is necessary th~Lt the complex potential w(z) should not have singularities at these points and, 
consequently, that the angles should be preserved in the case of the conformal mapping of the domain 
Gz (of the exterior of the airfoil) into the domain Gw in the w-plane. It is therefore necessary to seek 
a solution in the class of airfoils, the contours of which, including the boundary of the slot, have angles 
at the points M and N equal to n/2 and 3~/2, respectively (Fig. lb). In this case, an infinitely thin lip 
bounds the slot from above. Such airfoils have been considered in the linearized theory in [4]. 

Talcing account of what has been said, the inverse boundary-value problem for an airfoil with suction 
of the flow of an ideal incompressible fluid under an infinitely thin lip through a slot, the boundary of 
which (as in [3]) i,; modelled by an equipotential, is investigated below. In order to obtain a smooth 
flow around such an airfoil, the condition that the velocities at the ends of the slot should be finite is 
introduced. This is analogous to the Zhukovskii--Chaplygin postulate that the velocity at the trailing 
edge of an airfoil is finite. Viscosity can be taken into account using the boundary-layer model, and 
one of the methods described, for example, in [5]. Here, it is necessary to postulate that the whole of 
the boundary layer enters the slot. 

1. FORMULATION OF THE PROBLEM 

In the physical plane z, a plane steady stream of an ideal incompressible fluid flows smoothly around 
the required airfoil. The contour L2 of this airfoil, which consists of the smooth, impermeable segments 
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BAM and NB (,4 is the branch point of the flow and B is the point of convergence of the flow) and a 
permeable segment MN (the boundary of the slot), is dosed (Fig. lb). At the trailing edge B, which is 
taken as the origin of the system of coordinates, the angle which is internal to the flow domain is denoted 
by e'~, 1 ~ e ~< 2. The abscissa x is chosen to be parallel to the specified velocity of the free stream at 
infinity V** (we shall henceforth assume that the velocities have been made dimensionless by dividing 
V**). The arc abscissa s, made dimensionless by dividing by the perimeter of the contour Lz, is measured 
from s = 0 at the trailing edge up to s = 1 such that, as s increases, the flow domain remains to the 
left. 

The tangential flow velocity distribution (Fig. 2a) along the impermeable part of the contour Lz 

v ,=v , ( s ) ,  s~[O,s,.)u(s.,l] 

is specified, where the piecewise smooth function vx(s) vanishes at the flow branch pointA (s = sa) and 
is continuously differentiable at this point. At the trailing edge (the point B), the velocity v~(0) = -v., 
v~(1) = v. when e = 2 (an infinitely thin edge) and vx(0) = vx(1) = 0 when 1 ~< e < 2. 

The normal velocity distribution (Fig. 2b) 

v. =v.(s). sE(s.,,,s,,) 

is specified in the permeable segment MN of the contour Lz, where v,(s) is also a piece-wise smooth 
function. 

As in Golubev's paper [3], we shall assume that the boundary MN of the permeable segment of the 
contour Lz is an equipotential, orthogonal to the direction of the flow velocity (Fig. lb). Then, v~(s) = 
0, s • (sin, s,,). Since, on approaching the points M and N, the velocity components which are tangential 
to the airfoil contour (to the streamlines AM and NB) must pass continuously into components which 
are normal to the slot boundary, that is, to the equipotential MN, it is necessary, when specifying v (s), 
to satisfy the conditions 

+o)1, 

The airfoil shape and its aerodynamic characteristics now have to be determined. 
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Under the assumptions which have been made, a complex flow potential w(z)  = t0(x, y)  + i~l(x, y )  
exists, where z = x +/y, to is the velocity potential and W is the stream function. 

On the contour Lz, we have 

q~(s)=iv,(s)ds, O~<s~<l (1.1) 
sa 

The velocity circulation F is therefore found before solving the problem in the form F = 9(1) - to(0) 
= to1 - too. In the permeable segment M N  

V(s) = -  i v.(s)ds, sm <~ s ~< s. (1.2) 
$m 

Consequently, by (1.2), the flow rate Q through the slot M N  is determined using the formula Q = 
¥(s,,) - ¥(Sm) = ~,. Since the stream function is constant in the impermeable segment, allowing for 
the fact that ~(s) is continuous in L~, we will have 

t°i ~ ( s )  = v . (s)ds ,  

Sn ~ S ~ I  

(1.3) 

Thus, it is requh'ed to determine the dosed contour Lz and the function w(z)  which is analytic in Gz 
(Fig. lb) and has the following representation at infinity 

w(z)  = z - Q - iF In z + ~y~ c~z -k 
2~t k--0 

where Ck are complex coefficients, and which satisfies the complex boundary condition 

w(z)  L=q~(s)+i~t(s),  0 < - s<~ 1 

on the boundary L z. 

(1.4) 

2. C O N S T R U C T I O N  OF THE COMPLEX P O T E N T I A L  FOR FLOW 
A R O U N D  A CIRCLE WITH A SUC T ION SLOT 

When account is taken of (1.1) and (1.3), condition (1.4) enables us to determine the equation of 
the boundary of the domain Gw, lying in an infinite sheeted Riemann surface, in the w plane. We shall 
henceforth consider the single sheet of this surface (Fig. 3a) which corresponds to the domain Gz with 
a cut along the streamline descending from the trailing edge. 

We now introduce the auxiliary plane ~ and, as the canonical domain G;, we will choose the exterior 
of the unit circle (Fig. 3b). In order to find the dependence of the arc abscissa s of the contour Lz on 
the arc coordinate y of the circle I ~ I = 1, it is necessary to construct the complex potential w --- 0~(~) 
for a flow around the unit circle, on the boundary of which the segment M N  is an equipotential with a 
flow rate Q, and the circulation around the circle must be equal to F. The domain Gw, with a possible 
shift, must be the domain of values of this complex potential 0)(~). There will be no shift if one accepts 
that co(~) = 0, where ~ is the flow branch point on the circle. We will denote the free stream velocity 
in the ~ plane by Uo e'a and represent the function 0~(~) in the form 

to(;) = o~!(;)+o~2(;)+~03(;); c 0 2 ( ; ) = - ~ l n q ( ; ) ,  o~3(;) = - ~ x  lng(;) 

The functions 0) l ( l~)  , q(~), g(~) are regular in the domain G; and have first-order poles at infinity. 
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The function co1(4), which is the complex potential of circulation-free flow around the unit circle with 
a zero flow rate through the slot, uniquely maps the exterior of the circle G; into the exterior of the 
star GI (Fig. 4a). The function co1(4) is defined by the formula (see [6], for example) 

co, (4) = uoe-~'~; -t (4 - 4k )(4 - 4,, )~ (4 - 4,,, )~ + ~,,, 

4k =ertk, 4n =errs, 4m = e/~m 

where u0, a, Tk are real constants. The linear dimensions of the star depend on the magnitude of u0 
while the rotation of the star about the centre depends on a and 7k. However, since this angle is fixed, 
there is a relation between c~ and 7k, namely, Tk = 2~ + 2c~ - (Tn + 7,,)/2. 

The function co2(4), which is the complex potential of circulation-free flow with a flow rate Q, maps 
the exterior of the circle with a cut along the streamline from the point B to infinity into the domain 
G2 shown in Fig. 4(b). The function co3(4) is the complex potential of a pure circulatory flow around 
the unit circle; it maps the exterior of a circle with a cut along the streamline from point B to infinity 
into the domain G3 shown in Fig. 4(c). The construction of the functions o~(4) and co3(4) does not present 
any obvious difficulties. Finally, the complex potential can be written in the form 
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~(~) = uoe-ia~ -I (~ - ~* )(~ - ~.  )~  (~ - ~,n ) ~  + ¢Pm + iQ - 

Q arch(2 1-~l  - 1)-  ~E~arch(2 1+~1 1) 
2x 1 - COSYr 1 + cos)' r 

~l=(,;/~p+~t,/~)/2. ~.=e rr", yt,=(T,n+Vn)/2. Yr =(¥m - ¥ . )12  

(2.1) 

It should be noted that the coordinates of the ends of the permeable segment, Yn, Ym, are unknown 
on the circle; the modulus u 0 and the direction ¢t of the flow velocity at infinity are also unknown. At 
the same time, the quantities Q, F and qh are known. In order to determine the parameters u0, ct, yp, 
y~, %, we use the conditions 

co(e+°i)=cpl +iQ,  ¢O(;a)=O 

(2.2) 
¢o'(I)=O. co'(~.,)=o, m'(~.)=o 

which is a system of five non-linear transcendental algebraic equations. The first and second equations 
fix the values of the complex potential at the meeting and branch points of the flow while the remaining 
three equations indicate that the velocities (in the ~ plane) are zero at the critical points B, A and N. 
Note that the fifth and third equations of this system imply the exclusion of patterns for flows around 
airfoils when the paint N to the right along the upper or lower side of the lip. This assertion can be 
formulated as a oandition which is analogous to the Zhukovskii--Chaplygin postulate: of all the 
theoretically possible flows of an ideal incompressible fluid around an airfoil with a suction slot which 
is modelled by a cut in an equipotential, smooth flow occurs with a finite velocity at points N and B 
(Fig. lb). In fact, this assertion enables us (in a similar manner to the Zhukovskii-Chaplygin postulate) 
to determine the circulation F and the flow rate Q in direct problems. 

The formula for the velocity has the form [3] 

d; =,o: (2.3) 

If we use the notation of (2.3), system (2.2) can be converted to the form 

°a( e +°i ) = qh + iQ, oa(~a ) = O, ¥ a = rc + 2 a  + Y r 

Q = 4•u 0 sin('& / 2)[sin(a + ¥, / 2) + sin(yp - a)coS(Yr / 2)] 

F = 4gu 0 cos(y, / 2)[sin(a + Yr / 2) + cos(yp - a)sin(y r / 2)] 

The proof of the unique solvability of this system follows from the existence and uniqueness of the 
function ¢0(~). 

We will now prove that the function ¢o(~) which maps the exterior of a circle with a cut into the domain Gw in 
the w plane, exists and that it is unique. 

We transform the domain Gw (Fig. 3a) with the function t = f0 -1 (w), which is the inverse of the function w = 
uoe-%+(--Q + iF)(2r:) -1 In t --fo(t), into a certain domain Gt which is the exterior of a dosed contour (Fig. 4d). 
The domain Gt need not be single-sheeted but must be conformally reducible to a single-sheeted domain. AccordIng 
to Riemann's theorem, a conformal mapping of the domain Gt into the domain G; (Fig. 3b) exists with normalization 
in the neighbourhood of infinity ~ = Oo(t) = t + ao + a_l/t + . . .  The  required mapping of the domain G; into Gw 
is then obtained in the form w = w(~) = f0(O0q(~)). 

We will now prove uniqueness by contradiction. Suppose that two mappings w = ¢o(~) and w = to.(~) exist. The 
function 

G = P(~) = to: n (re(t;)) = B ~  + Bo + B_~ / ~+... 

maps the exterior of one unit circle, conformally and in a one-to-one corresponden .ce, into the exterior of the other 
unit circle with the preservation of infinity. Such a function has the form ~. --- e-'a~. However, if the point B is 
fixed, that is, it is asstlmed that the point ~ = e +°/transfers to the point w = 91 + iQ, then o = 0 and t0(~) --- tt~(~). 
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3. S O L U T I O N  OF THE INVERSE  BOUNDARY-VALUE P R O B L E M  

To solve the problem in question it is necessary to establish the relation between the arc abscissae 
of the required contour and a circle, that is, s = s(?) for 0 ~< T ~< 2~. This can be done .by comparing 
the complex velocity potentials on the boundaries of the domains G~ and G;: w(s) = to(err), where w(s) 
is defined by formula (1.4) and to(e/r) is defined by formula (2.1) when ~ = e iv. Here, unlike the case 
of an impermeable profile, one must deal with the four segments (B'A,AM, MN and MB" in Fig. 3a) 
of the monotonic dependences of tp or ~ on T and s. The monotonicity and uniqueness of the dependence 
s(?), 0 ~< 7 ~< 2x follows from this. 

We next introduce the function 

X(~) = ln(dw / dz) - ln(~ - ~a ) - (2 - e) ln(~ - 1) + (3 - e)In (3.1) 

which is analytic in the domain G;. 
On the boundary I ~ I = 1, the real part of this function is known 

Consequently, the function X(~) is the solution of the Schwartz problem for the exterior of a 
circle 

1 2.~ ~+eet 
Z( ; )=~ 'g  ~ S(T) ~_-'~ "d~l +iOto 

It follows that % = 0 from the condition Im g(oo) = 0. Using the representation (3.1), after substituting 
expression (2.3) we find the function 

z(~)=uoe_ia I e_r(;)(1 1)~-1(~-~ ,  ,],l~d ~ (3.2) 

which is analytic in the domain G;. 
On putting ~ = e/v in this relation, we obtain a parametric equation of the required contour of the 

wing. However, the solution which has been constructed does not ensure the closure of the contour L~ 
and the agreement of the specified magnitude of the velocity V** with that determined during the solution 
process. (We recall that the boundary of the permeable segment which is modelled by a slot is also 
included in the contour Lz of the wing.) 

The condition for the velocity at infinity and the specified velocity to be identical is written in the 
same way as in the case of an impermeable contour (see [2], for example) 

2~ 

I S(T)d), = 0 (3.3) 
0 

The closure condition is 

S(T)eiVdT = ~ 1 - • + ~" ~ (3.4) 
0 

If conditions (3.3) and (3.4) are satisfied, the inverse boundary-value problem of the aerodynamics 
of an airfoil with a suction slot, which is being considered here, has a unique solution. However, if 
Conditions (3.3) and (3.4) turn out to be unsatisfied, the search for the form of the closed contour for 
an airfoil with suction can be made using the method of quasisolutions [7]. 

If we put ?r = 0, that is, Sm= sn in the above formulae, we obtain the solution of the inverse boundary- 
value problem of aerodynamics in the case of an impermeable aerofoil. 

The aerodynamic forces acting on an airfoil with a suction slot are calculated using well-known 
formulae (see [3], for example). 
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R x = pQV~., R r = pFV** (3.5) 

where p is the fluid density. Since the flow rate Q > 0 for an airfoil with suction, Rx is the drag, while, 
in the case of an airfoil with blowing (Q < 0), Rx is the reactive force. Note that, in the case of blowing, 
formula (3.5) only holds in the case of a potential flow without any breaks in continuity and when the 
total pressure of the blown jet is identical to the total external pressure. 

4. N U M E R I C A L  E X A M P L E  

The results of the construction of an airfoil with a lift coefficient greater than two and e = 2 (an 
infinitely thin trailing edge) are shown in Fig. 5. The velocity distribution given by the solid line in Fig. 
5(a) was taken as the initial velocity distribution and a segment in which the velocity incident on the 
upper surface (sin = 0.90, sn = 0.91) follows a linear law was chosen for the permeable segment. The 
velocity on the upper surface up to and after the slot was chosen as being constant. Lighthill [8] has 
considered airfoils with such velocity distributions when there is no permeable segment. The analogous 
problem of determining the shape of a diffuser with suction of the flow and with constant velocities on 
the wall has been ,~olved by Stepanov [9]. 

In the calculations which are presented here, the length of the permeable segment constituted 1% 
of the perimeter of the airfoil contour and, of the 200 computational points from which the airfoil contour 
was constructed, just two points fit on the equipotential. In the example, this boundary is therefore 
adopted as the section of the normal. We recall that the magnitude of the velocity is dimensionless 
everywhere, having been divided by F , ,  and the linear dimensions in all calculations and in Fig. 5(a) 
have been divided by the perimeter of the contour with the exception of the data in Fig. 5(b) where 
the linear dimensions have been divided by the length of the airfoil chord. Hence, the velocity at infinity 
F** = 1. For the specified velocity distribution F = 0.478 and the flow rate Q = 0.011. 

An open contour (the solid line in Fig. 5b), around which a flow occurred with F .  = 1.02, was initially 
obtained by solving the problem. After using the method of quasisolutions, a dosed contour (the dashed 
line in Fig. 5b) wa~ constructed around which a flow occurred with V. = 1.0 at an angle of attack I~ = 
7 °. The profile thickness t = 21%. The lift coefficient for this profile c. = 2.09 and the drag coefficient 
cx = 0.048. As a result of the quasisolution, the initial velocity distri(aution (the solid line in Fig. 5a) 
naturally changed and the modified distribution is shown in Fig. 5(a) by the dashed line. 

I wish to thank (3. Yu. Stepanov for a number of valuable comments which were taken into account 
in the final draft of the paper. 
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